If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+20n+98=0
a = 1; b = 20; c = +98;
Δ = b2-4ac
Δ = 202-4·1·98
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{2}}{2*1}=\frac{-20-2\sqrt{2}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{2}}{2*1}=\frac{-20+2\sqrt{2}}{2} $
| 180=3x*12 | | c-5=5c+11 | | w+28+w+44+4w=180 | | 10(x+3)=–20 | | 9x+9=49 | | 22=n+(-3) | | 5=x/2-5 | | −35+4x=−3x | | 92+44+2p=180 | | x+25=2(x-25) | | 172-x=228 | | 32.80=2.05g | | 8x^2-5=-20x | | y2+22=382y | | 13v-10v-2v=8 | | 34x+6=2(5x+4) | | 8x^2-5=-12x | | 256-y=149 | | 237=17+10(4-2x) | | 1/4(24x-12)=27 | | -3-g=6 | | y2+22=382y | | x+54/8=5 | | 7.8=12-1.2x | | 2x=16+3 | | 34=y−15X8 | | -w+6=270 | | 2.2+x=6.2x= | | -2n-7=11-5n | | 66+30+14v=180 | | 32+8g-10g=150 | | −8a−4=44 |